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1.0 Introduction 
 
The treatment of this subject requires knowledge 
the results of Maxwell's theory for the behavior of 
electromagnetic waves in vacuum and in media. Also important in 
this context is the theory of refraction and reflection of 
plane waves and the theory of conduction. 
 
With these prerequisites, the problem of the topic can be 
traced back to trivial, formal consideration in electrical 
engineering. 
 
Further, when considering the electromagnetic wave, I confine 
myself to the far field, so the wave decreases in proportion to 
the reciprocal of r when r is the distance from the origin.
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2.0 Model 
 
The minimization of the reflection of electromagnetic waves 
requires that any reflection takes place. Reflections of 
electromagnetic waves on highly conductive metal surfaces are 
particularly intense. As practical examples aircraft, ships and 
submarines are mentioned. 
 
In addition to the geometry, the reflection is determined by 
the surface texture. This one comes to the following model: 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 
 
An electromagnetic wave propagates spherically from its origin 
and is described by the wave equation with free space damping, 
damping constant and phase constant [1], [2], [3]. Medium 1 can 
be attributed to the characteristic impedance Z1 due to its 
physical properties. 
 
The wave penetrates through the interface in medium 2 and again 
propagates in the direction away from the origin by free space 
damping, damping constant and phase constant (now for medium 
2). Because of the other physical properties of medium 2, 
another characteristic impedance Z2 results. Part of the wave 
penetrated in medium 2 is reflected. This reflection is 
described by the reflection factor p12. This reflection factor 
is defined by the characteristic impedances of medium 1 and 
medium 2 and 3. 
 
If medium 3 is assumed to be electrically conducting, the part 
of the electromagnetic wave not reflected on the boundary layer 
1-2 and attenuated on the further path through medium 2 is 
totally reflected at the boundary layer 2-3 and further 
attenuated on its return path through medium 2. 
 
It is easy to see that in this model medium 1 is the 
propagation medium, medium 2 is a color protection layer and 
medium 3 is a constructive exterior wall. 
 
In technical application, apart from special cases, medium 1 
will be either free space, the atmosphere of the earth or 
seawater. Medium 2 is a dielectric insulating material and 
medium 3 is a metal. The total reflection taking place at the 
boundary layer 2-3 can hardly be changed, because the material 
condition of medium 3 is defined mechanically constructively. 

Medium 3 
 =  

Medium 1 
 
 
Z 

Medium 2 
,Medium 2 
 
   Z 
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Medium 1, the propagation medium of the electromagnetic wave, 
is determined by the environment. The consequence of this 
consideration is that a minimization of the reflection of 
electromagnetic waves can only take place at the border view 2-
3 and in medium 2. Therefore, the propagation mechanism in 
media should now be described mathematically.
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3.0 Electromagnetic waves in media 
 
The electromagnetic wave is described by the wave equation 
(equation 1) with damping constant (equation 2) and phase 
constant (eq. 3) [1],[3]: 
 

E(x,t)=E0/4//r e-X ej(t - X)  (eq. 1) 
 

=sqrt{1/2[sqrt(1+(//)^2)-1]} (eq. 2) 
 
  =sqrt{1/2[sqrt(1+(//)^2)+1]}  (eq. 3) 
 
Let's take a look at this and choose the medium seawater with a 
relative dielectric constant er = 81 and a specific electrical 
conductivity of =10-6 m//mm2. 
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Figure 2 Amount of equation 1 in dB as function of frequency f 
 

You can see three areas, which can be described as a line area, 
transition area and wave area. In the line area, electrical 
conduction takes place by means of charge carrier transport. 
The damping is caused by loss of the ohmic resistance of the 
seawater. As the frequency increases, the electrical conduction 
decreases and an electromagnetic wave occurs, the attenuation 
of which does not depend on the frequency 
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Figure 3 – Amount of equation 3 in dB as function of the distance r and the free space loss 
 
Figure 3 shows the attenuation of electromagnetic waves in 
seawater over the distance. For comparison, the free space 
damping is drawn with. The different damping behavior at longer 
distances in seawater and in vacuum is clear. 
 
For the sake of completeness, the phase characteristic and the 
phase velocity as a function of the frequency are also to be 
drawn. 
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Figure 4 – Phase progression in Degrees in seawater over the frequency f 
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Figure 5 - Phase velocity when propagating in seawater over frequency f 

 
This describes the electromagnetic wave in media using the 
example of seawater. Other media have different physical 
constants , , . 
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4.0 Reflection minimization 
 
From the theory of electrical lines it is known that the 
reflected power at the end of the line is minimal and thus the 
power delivered to the load resistor becomes maximum when the 
condition 
   ZLast = Z*Leitungsende 
 
is satisfied. In this case, leading and returning power are 
about the same size and there is adjustment. This also applies 
[1] for electromagnetic waves in two media with the 
characteristic impedance Z1 and Z2. 
 
   Zw=sqrt(/)     (eq. 4) 
 
It is therefore necessary to ensure that the characteristic 
impedance of medium 2 together with medium 3 in the model 
corresponds at least in absolute value to the real 
characteristic impedance of the propagation medium 1. Then 
about half of the amount of the incoming electromagnetic wave 
is reflected. That is the physically achievable minimum. The 
phase change in the reflection is not of interest. 
 
Medium 2 is now a dielectric insulator with loss resistance, ie 
a capacitor with the capacity 
 
     C=0rA/d   (eq. 5) 
 
where d is the thickness of the medium 2 and A is the area of 1 
m2, ie 106 mm2 [1]. 
 
The loss resistor, which is technically parallel to the 
capacitor, has the resistance value 
 
     R=d//A   (eq. 6) 
 
Where d is the thickness of the medium 2 and A is the area of 1 
m2 so 106 mm2 [1].  is the specific electrical conductivity of 
the dielectric material. From the point of view of line theory, 
therefore, the characteristic impedance of medium 1 to the 
magnitude of the characteristic impedance of the medium 2 and 
medium 3 of 
 
                                  d 10-6 
            Z2=----------------------------- 
       mm2 + j0r mm2 
 
adapted as much as possible. 
 
This equation can be solved for , bearing in mind that  has 
to become real and positive for physical reasons. 
 

=sqrt( (d*10-6/Z1/mm2)2 – (2fC0r)2)) (eq. 7). 
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ZLast can also be broken and  determined from the poles. Then, 
with Equation 5 and Equation 6 in 
 
               1 

Z2=---------------- 
         1/R’ + jC’ 
 
 

      d/A              0rd/A  
Z2=----------- -j -------------    (eq. 7a) 
   [1+(0r/)2]     2 + (0r)2 

 
 

=2fC0r    (eq. 7b) 
 
 
 
Where fC is the cut-off frequency. At larger frequencies, the 
reflection properties at the transition to medium 2 improve 
again. 
 
Thus, the required specific electrical conductivity of the 
material in medium 2 can be calculated. His unity results in 
m/(mm2). Medium 2 is now physically adaptable. 
 
0r incidentally, it is proportional to the cosine of the angle 
of the flowing current to the surface normal vector on medium 2 
in space. This angle becomes 90° at fc. The current thus flows 
over the surface of the resulting by the skin effect capacitor 
C 'at the interface between medium 1 and 2. 
 
In turn, one can conclude that the skin effect is not an 
electromagnetic wave, as some scientists claim, but is based on 
a pure displacement process of charge carriers, with ohmic 
sequence.
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5.0 Example 
 
d=500 m, f= 1.5 GHz, Medium 1: r=1, Medium 2: r=8 
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Figure 6 – calculated required specific electrical conductivity for medium 2 
 
The calculated specific electrical conductivity is 
 
    =0.6677. 
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Figure 7 – the specific resistance resulting from figure 6 
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Figure 8 – 3 times the penetration depth of the electromagnetic wave in medium 2 
 
The penetration depth of the electromagnetic wave in medium 2 was 
calculated with 
 
    =3/sqrt(f)    (eq. 8). 
 
The function graph specifies the values for a 95% damping of the 
shaft in medium 2. These values are much smaller than the thickness 
of the medium. 
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The amount of the calculated electrical reflection factor 1 is 

0.99999999999608522966987364765262
 

The difference to 1 is due to an inhomogeneous longitudinal wave, 
which results from the boundary conditions of the MAXWELL equations, 
but is practically of no importance here. 
 
The calculated reflection factor 2 is purely complex, ie -j1 
and describes the absorbed part of the wave. 
 
The incident energy of the wave is thus reflected approximately 
half of the reflection factor 1, half absorbed by the 
reflection factor 2, and the rest of the energy remains in a 
small inhomogeneous longitudinal wave, parallel to the medium 
boundary. 
 
The sample material for medium 2 to be produced from this is 
called here Miniflex. 
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